SAMO-COBRA: A Fast Surrogate Assisted Constrained Multi-objective Optimization Algorithm
نویسندگان
چکیده
This paper proposes a novel Self-Adaptive algorithm for Multi-Objective Constrained Optimization by using Radial Basis Function Approximations, SAMO-COBRA. The automatically determines the best Function-fit as surrogates objectives well constraints, to find new feasible Pareto-optimal solutions. also uses hyper-parameter tuning on fly improve its local search strategy. In every iteration one solution is added and evaluated, resulting in strategy requiring only small number of function evaluations finding set solutions Pareto frontier. proposed compared wide other state-of-the-art algorithms (NSGA-II, NSGA-III, CEGO, SMES-RBF) 18 constrained multi-objective problems. experiments we show that our outperforms terms achieved Hypervolume after given fixed evaluation budget. These results suggest SAMO-COBRA good choice optimizing optimization problems with expensive evaluations.
منابع مشابه
solution of security constrained unit commitment problem by a new multi-objective optimization method
چکیده-پخش بار بهینه به عنوان یکی از ابزار زیر بنایی برای تحلیل سیستم های قدرت پیچیده ،برای مدت طولانی مورد بررسی قرار گرفته است.پخش بار بهینه توابع هدف یک سیستم قدرت از جمله تابع هزینه سوخت ،آلودگی ،تلفات را بهینه می کند،و هم زمان قیود سیستم قدرت را نیز برآورده می کند.در کلی ترین حالتopf یک مساله بهینه سازی غیر خطی ،غیر محدب،مقیاس بزرگ،و ایستا می باشد که می تواند شامل متغیرهای کنترلی پیوسته و گ...
An Adaptive Surrogate-Assisted Strategy for Multi-Objective Optimization
1. Abstract A sequential metamodel-based optimization method is proposed for multi-objective optimization problems. The algorithm, designated as Pareto Domain Reduction, is an adaptive sampling method and an extension of the classical Domain Reduction approach (also known as the Sequential Response Surface Method). In addition to standard benchmark examples, a Multidisciplinary Design Optimizat...
متن کاملA FAST FUZZY-TUNED MULTI-OBJECTIVE OPTIMIZATION FOR SIZING PROBLEMS
The most recent approaches of multi-objective optimization constitute application of meta-heuristic algorithms for which, parameter tuning is still a challenge. The present work hybridizes swarm intelligence with fuzzy operators to extend crisp values of the main control parameters into especial fuzzy sets that are constructed based on a number of prescribed facts. Such parameter-less particle ...
متن کاملA Novel Hybrid Algorithm for Constrained Multi-objective Optimization
A new hybrid Optimization Algorithm is proposed to solve Constrained Multi-objective Optimization Problems (CMOPs). The algorithm is named BBO/DE which combines the exploitation ability of Biogeography-based Optimization (BBO) and the exploration ability of Differential Evolution (DE). Meanwhile distance measures and adaptive penalty functions are adopted to handle the constraints so that optim...
متن کاملConstrained Multi-Objective Optimization Problems in Mechanical Engineering Design Using Bees Algorithm
Many real-world search and optimization problems involve inequality and/or equality constraints and are thus posed as constrained optimization problems. In trying to solve constrained optimization problems using classical optimization methods, this paper presents a Multi-Objective Bees Algorithm (MOBA) for solving the multi-objective optimal of mechanical engineering problems design. In the pre...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Lecture Notes in Computer Science
سال: 2021
ISSN: ['1611-3349', '0302-9743']
DOI: https://doi.org/10.1007/978-3-030-72062-9_22